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A DATASET DETAILS
This section provides a detailed account of the dataset sources and
characteristics that constitute the SpineBench benchmark. For each
source dataset, we meticulously list its specific name, the imaging
modality used, key data dimensions, the primary disease covered
and the corresponding number of cases. As presented in Table 4,
SpineBench consolidates four currently publicly available spinal
disease datasets. These datasets encompass two common imaging
modalities in the spinal domain, namely X-ray and Magnetic Reso-
nance Imaging (MRI), and involve 11 prevalent diseases within the
spinal field.

Table 4: Detailed information of the datasets included in
SpineBench. The "Modality" column specifies the imaging
modality used by the dataset. In the "Dim" (Dimension) col-
umn, 2D and 3D respectively denote the dimensionality of
the original data. The "Disease" column outlines the pri-
mary types of spinal diseases contained within the dataset.
The "Count" column indicates the number of cases actually
adopted in SpineBench.

Challenge / Dataset Modality Dim Disease Count

BUU Spine Dataset X-rays 2D Spondylolisthesis 806
CSXA X-rays 2D Cervical Spine Curvature Disorders 4,962
RSNA MRI 3D Degenerative Spine Conditions 48,688
VinDr-SpineXR X-rays 3D Spinal Bone Lesions 23,202

Currently, publicly available datasets for research in the spinal
domain are relatively scarce. In particular, under the influence of
data barriers, open-source datasets specifically for spinal disease
diagnosis are even more limited. As illustrated in Figure 8, based
on previous research [2], we have identified only three additional
datasets suitable for spinal disease diagnosis [40, 41, 46] and three
for vertebral segmentation [13, 16, 50]. Furthermore, while access
links were provided for some other datasets, they are not included
in our survey as they were practically inaccessible. Evidently, the
paucity of data has become a significant bottleneck hindering the in-
depth development of AI applications in the spinal domain. There-
fore, further promoting data sharing and openness in the spinal
domain, while strictly adhering to research ethics, is crucial to
advance technological progress in this field.

B IMAGE SIMILARITY COMPARISON
To optimize the visual similarity of incorrect options for QA pairs
in SpineBench, this study ultimately employed the SigLIP2 model
to extract image embeddings. In practice, in addition to SigLIP2, we
also evaluated the performance of two other models, MedViT [32]
and SigLIP [58], in extracting features from spinal disease images.
The MedViT model integrates the local receptive field capabilities
of Convolutional Neural Networks (CNNs) with the global con-
nectivity of transformers, incorporating an attention mechanism,
which can effectively enhance the robustness and generalization
ability of medical diagnosis. The SigLIP model, on the other hand,
utilizes a Sigmoid binary classification loss function in place of
the traditional InfoNCE contrastive learning loss. This approach
decouples the loss calculation for each sample from other samples
within the batch, thereby greatly simplifying the implementation of

Figure 8: Statistical overview of existing spine datasets. Anal-
ysis reveals 17 open-source (5 for disease diagnosis, 12 for
vertebra segmentation) and 32 private datasets.

distributed loss and improving computational efficiency, making it a
preferred visual encoder for numerous advanced large multi-modal
models. SigLIP2 builds upon SigLIP by further integrating tech-
niques such as caption-based pre-training, self-supervised losses
(e.g., self-distillation, masked image prediction), and online data
filtering, thereby enhancing the encoding efficacy of SigLIP.

Operationally, we first randomly sampled 200 images for each
spinal disease from the SpineBench to construct a disease image
database. Subsequently, we utilized the aforementioned three mod-
els to extract feature embeddings from these images, forming corre-
sponding embedding libraries. Then, for each image to be evaluated
in SpineBench, its embedding was extracted. By calculating the
cosine similarity between this embedding and each embedding in
the library, we identified the three most visually similar different
disease types in the library, excluding the image itself (if present).
Finally, by combining the inherent "Healthy" option and the true
disease label of the image, a set of highly confounding options was
constructed for each QA pair. Through a comparative analysis of
the similarity results generated by the three models, we found that
MedViT performed suboptimally to effectively distinguish features
of different spinal diseases, while SigLIP2 demonstrated superior
performance compared to SigLIP. Consequently, the SigLIP2 model
was ultimately selected to extract image feature embeddings for
spinal diseases. Partial cosine similarity results obtained after ex-
tracting image embeddings and calculating similarities using the
three models are presented in Table 6.The first row lists abbrevia-
tions for 12 spinal diseases, with their specific meanings detailed
in Table 5.

C EVALUATION SETUP
C.1 Evaluation Protocol
This section will detail the evaluation procedure. We evaluate vari-
ous types of MLLM, including medical-specific models, open-source
general-purposemodels, andAPI-based closed-source general-purpose
models. For open-source models, we primarily selected versions
with a parameter scale of approximately 7B for testing, with their
model weights sourced from their respective official Hugging Face
repositories. The specific steps of the evaluation are as follows:
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Table 5: The abbreviations for 11 spinal diseases.

Name of Disease Abbreviations

Disc space narrowing Dsn.
Foraminal stenosis Fs.
Subarticular stenosis Sas.

Osteophytes Ost.
Spinal canal stenosis Scs.
Spondylolisthesis Spondy.

Straight cervical vertebrae Strcv.
Vertebral collapse Vc.
Cervical kyphosis Ck.
Cervical lordosis Cl.

Sigmoid cervical vertebrae Sigcv.

(1) Prompt Input: The predefined prompts, as delineated in
Figure 9 and Figure 10, were input into the models under
evaluation. The anticipated model output was strictly lim-
ited to option identifiers (e.g., "A", "B", etc.). Recognizing
that contemporary large models incorporate built-in safety
mechanisms designed to prevent the provision of poten-
tially misleading medical judgments, their outputs typically
tend to recommend consultation with a professional physi-
cian rather than offering direct diagnostic conclusions. To
address this, we incorporated a simulated clinical scenario
setting within the prompts to encourage the models to pro-
vide direct answers to all questions within SpineBench-Sub.

(2) Instruction Following and Answer Extraction: If a
model failed to output a clear letter-based option identifier
as expected, or if its output did not provide clear selection
guidance, the Gemini-2.5-Pro model is employed to extract
a candidate answer from the raw output.

(3) Result Determination: If a valid answer cannot be suc-
cessfully extracted from the model’s output, or if the ex-
tracted answer does not perfectly match the ground truth,
the instance is judged as incorrect. Any successfully ex-
tracted answer is considered the model’s final prediction
for that question.

This standardized procedure is designed to ensure consistency
and comparability in evaluating the instruction-following capa-
bilities and answer accuracy of different models, and it has been
specifically adapted to meet the stringent requirements for output
format precision in medical tasks.

D MLLMS REASONING EVALUATION
For each MLLM under evaluation, we randomly sample 10 seg-
ments of their reasoning processes from their performance in each
tasks (spinal disease diagnosis and spinal lesion localization). We
subsequently invite collaborating clinical physicians to conduct a
professional assessment of these reasoning processes from multi-
ple perspectives, including clinical reasoning plausibility and the
application of professional knowledge. The detailed scoring rubrics
are presented in Figure 11, respectively.

Figure 9: Prompt used to evaluate MLLMs in spinal disease
diagnose task.

Figure 10: Prompt used to evaluate MLLMs in spinal lesion
localization task.

Figure 11: Reasoning Processes Scoring Guidelines.
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Table 6: Results of cosine similarity calculations for all disease features derived from four images of patients with Spondylolis-
thesis. Abbreviations: the full terms of all departments are listed in Table 5.

ID Correct Answer Dsn. Fs. Sas. Ost. Scs. Spondy. Strcv. Vc. Ck. Cl. Sigcv.

MedViT
0 Spondylolisthesis 0.991 0.987 0.973 0.972 0.986 0.944 0.981 0.991 0.931 0.942 0.932
1 Spondylolisthesis 0.994 0.994 0.969 0.975 0.989 0.968 0.983 0.991 0.962 0.965 0.962
2 Spondylolisthesis 0.993 0.993 0.986 0.989 0.993 0.979 0.992 0.992 0.968 0.975 0.970
3 Spondylolisthesis 0.995 0.996 0.984 0.990 0.995 0.996 0.990 0.996 0.995 0.996 0.995

SigLIP
0 Spondylolisthesis 0.957 0.952 0.798 0.958 0.850 0.951 0.902 0.960 0.897 0.908 0.903
1 Spondylolisthesis 0.955 0.951 0.808 0.953 0.855 0.955 0.916 0.959 0.918 0.919 0.918
2 Spondylolisthesis 0.966 0.959 0.804 0.966 0.851 0.970 0.881 0.965 0.872 0.883 0.875
3 Spondylolisthesis 0.963 0.958 0.806 0.972 0.858 0.962 0.884 0.971 0.886 0.887 0.890

SigLIP2
0 Spondylolisthesis 0.966 0.939 0.867 0.964 0.892 0.973 0.940 0.969 0.937 0.944 0.940
1 Spondylolisthesis 0.967 0.921 0.840 0.969 0.864 0.979 0.924 0.964 0.919 0.921 0.923
2 Spondylolisthesis 0.961 0.912 0.852 0.956 0.882 0.965 0.916 0.963 0.903 0.913 0.911
3 Spondylolisthesis 0.975 0.926 0.850 0.977 0.881 0.978 0.921 0.972 0.914 0.917 0.919
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Figure 14: An example of disease misdiagnosis case.

Figure 15: An example of healthy patient misdiagnosis case.

E CASE STUDY

Figure 12: An example of correct disease diagnosis case.

Figure 13: An example of healthy patient diagnosis case.
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